Purpose:	To gather experimental evidence of Gay-Lussac's law.		
Materials:	125 ml Erlenmeyer flask Pressure and temperature sensors, interface, etc.	Burner and Ring Stand Large beakers	
Procedure:	Set up the system as demonstrated in class.		
	Open the Pressure-Temperature experiment from the Chemistry with Vernier folder.		
	Create a water bath at a temperature of your choice. DO NOT USE A TEMPERATURE OVER 60 C. <i>After the flask sits in the water bath for a period of 5 minutes</i> , use Logger Pro to record the temperature and pressure.		
	Create a graph of the temperature of the water and the pressure of the gas at each of at least 4 different temperatures (5 is better) . Put the dependent variable on the correct axis.		
Data:	• Do a linear regression (a linear fit on Logger Pro) on the data. Do not force a zero.		
	• Save your data and graph. THIS IS GRAPH ONE.		
	• Click on the graph and labels and change them so that you have a graph with temperature on the Y axis and pressure on the X. This is GRAPH TWO . Again, do a linear regression		
Conclusion	on 1. What does graph one tell you about the relationship between temperature and pressure		
	2. On GRAPH TWO , what is the value of the Y in	itercept?	
	3. Using GRAPH TWO, as the pressure decreased, what was happening to the temperature?		

4. Using Graph TWO what would be the value of the pressure when the line crossed the y axis?

5. Using Graph TWO, what is the value of T when the line crosses the y axis?

6. When the line crosses the y axis, there is 0 pressure. What causes pressure?

7.	Since there is no pressure, is there tempera	ture? (temperature is caused	
by	movement of molecules)		

8. What is the significance of the Y intercept on graph two?

9. What is your value for absolute zero?

10. What the value of absolute zero in degrees K?