TEST REVIEW GCAA Chemistry Atoms

From the Hangman Game-----Match the answers correctly!

A. Excited	B. Energy	C. Orbital	D. Plum Pudding Model				
E. Bohr	F. Electron	G. Frequency	H. Neutron				
I. Thomson	J. alpha particles.	K. Wavelength	L. John Dalton				
M. Rutherford	N. Ground State	O. Nucleus	P. Proton				
C1. A region in space where an electron is found or "the probable position of an electron."							
A2. An electron is at a higher energy level than normal. It has moved away from the nucleus.							
3. This atomic model said the that the atom was a solid, positively charged sphere with embedded negative charges.							
4. This scientist is given credit for discovering atoms.							

____O___5. The center of the atom

_____E___6. Used emission of light to develop the idea of electron energy levels in the atom

_____G___7. The number of cycles per second---related to the energy of light.

_____H___8. These subatomic particles do not have a charge.

_____F___9. These subatomic particles have a negative charge.

_____I___10. This scientist developed the plum pudding model of the atom, and discovered electrons.

P____11. A positive subatomic particle with a mass of one amu

____J_12. A product of radioactive decay, these are the particles that Rutherford shot through the gold foil. They contain two protons and two neutrons.

____K___13. Each color of light has a specific _____. The shorter ones are higher in energy, and the longer are lower in energy.

B____14. Electrons lose this when they fall from the excited state to the ground state.

 $_____ M__15$. This scientist is given credit for discovering that the nucleus is a tiny mass at the center of the atom.

_N___16. These words describe an electron that is in its normal, unexcited position.

"Atom Basics" Sect	tion					
D1. What is	the smallest unit of a	in element that retain	is the properties	of that element?		
a. a neutron	b. an electron	c. a proton	d. an ator	d. an atom		
D2. What p	articles form the nucl	leus of an atom?				
a. protons	b. electrons	c. neutrons	d. proton	s and neutrons		
A3. Electron	ns are negatively char	ged and have the lea	st mass of the t	hree sub-atomic particles		
a. True	b. False					
A4. The cha	rge of the nucleus is	always				
a. positive	b. negative	c. neutral	d. cannot	determine		
C5. An isoto	ope is an atom of a sp	ecific element with	a varying numbe	er of		
a. ions	b. protons	c. neutrons	d. electro	ns		
B6. The nuc	leus of an atom is					
a. negatively charge c. positively charged	ed and has low densit d and has a low densi	y b. positi ity d. negati	vely charged and vely charged an	d has a high density Id has a high density		
A7. An atom	n is made up of mostl	y empty space in wh	ich the electron	s occupy.		
a. True	b. Flase					
C8. A neutra	al atom always has th	e				
a. same number of p c. same number of p	protons and neutrons protons and electrons	b. same d. none	number of neutr of the above	rons and electrons		
<u>B</u> 9. The nun	nber 84 in Krypton-8	4 represents the				
a. atomic number	b. mass nu	mber c	. electrons	d. neutrons		
C10. Electro	ons					
a. circle the anb. are located ifc. move aroundd. move in the h	atom's nucleus in or n the nucleus. d the nucleus in elect nighest energy orbita	bitals, which are pat ron orbitals, which a ls available to them	hs like the plane re regions of sp	ets orbit around the sun. ace where the electrons e	xist.	

____B __11. Different isotopes of the same element have different atomic numbers.

a. True b. False

D	_12. All atoms of	of the same eleme	nt have the sa	ame number of		
a. neutro	ons b	. mass number	с.	atomic masses	d. pi	rotons
E	_13. Aluminum-	27 has ne	eutrons.			
a. 10	b.11	c. 12	d. 13	e. 14	ab. 27	
A ground s	_14. Neon light state lower energ	s give off light w gy levels.	hen excited e	lectrons fall back	t from higher er	nergy levels to their
a. True	b. False					
C	_15. How many	electrons are in a	a -3 ion of Nit	trogen-15.		
a. 4	b.7	c. 10	d. 11	e. 17		
B	_16. How many	protons are in a	3 ion of Nitro	ogen-15?		
a. 4	b.7	c. 10	d. 11	e. 17		
F	_17. How many	neutrons are in a	-3 ion of Nit	rogen-15? (note	-the correct a	nswer was not on the test
a. 4	b.7	c. 10	d. 11	e. 17	f. 8	distributed in class)
B	_18. Cations are	e positive ions. D	o cations for	m by gaining ele	ctrons, or by los	sing electrons?
a. gainii	ng b	losing	c. Electro	ons are not involv	ved in the forma	tion of ions
B	_19. What part	of the atom is mo	st involved in	n interactions bet	ween atoms?	
a. Proto	ns B	. Electrons	C. Neutro	ons		

_____D___20. Element Z has 2 naturally occurring isotopes with the following percent abundance: the isotope with a mass of 20.0 amu is 25% abundant, while the isotope with a mass of 22.0 amu is 75% abundant. What is the average atomic mass for element Z?

a. 20.0 amu b. 20.5 amu c. 21.0 amu d. 21.5 amu e. 22.0

The Electron Cloud Section

C	1. Which is the co	rrect sequence in	n which	he following s	sublevels	will fill? (use	the diagonal rule or
a. 1s, 2s, 3	3s, 4s, 2p, 3p, 4p,	3d		b. 1s, 2s, 2p,	3s, 3p, 3	d, 4s, 4p	
c. 1s, 2s, 2	2p, 3s, 3p, 4s, 3d,	4p		d. 1s, 2s, 2p,	3s, 3p, 4	s, 4p, 3d	
B2	2. Which is the co	rrect sequence in	n which	the following	sublevels	s will fill?	
a. 4p, 4d,	4f, 5s, 5p, 5d, 5f,	6s, 6p, 6d, 7s		b. 4p, 5s, 4d,	5p, 6s, 4	f, 5d, 6p, 7s, 5	f, 6d
c. 5s, 6s, ′	7s, 4p, 5p, 6p, 4d,	5d, 6d, 4f, 5f		d. 4p, 5s, 4d,	5p, 6s, 5	6d, 6p, 4f, 7s, 6	d, 5f
C3	3. Which of the fo	llowing has an i	nvalid s	ublevel design	ation?		
a. 7s	b. 3p	ı	c.3f		d. 5d		e. 4f
B4	4. Orbitals are	of space a	round th	e nucleus whe	ere a/an _	is like	ly to be located.
a. paths, e	electron	b. regions, ele	ectron	c. pat	h, neutro	n	d. regions, neutron
E£	5. What is the max	aimum number o	of electro	ons that can ex	tist an an	y p sublevel .	
a. 1	b.2		c. 3		d. 4		e. 6
D	6. What is the max	kimum number o	of electro	ons that can ex	kist an an	y d <i>sublevel</i> .	
a. 1	b.2		c.6		d. 10		e. 14
Ba. the same	7. Electrons which ne spin b. the	n occupy the sam opposite spin	ne orbita c. no s	l must have pin at all	d. there	cannot be two	electrons in one orbital
D	8. In the orbital di	agram for nitrog	en, how	many electron	ns are un	paired in the 2	p sublevel?
a. 0	b. 1	c. 2	d. 3	e. 4			
You will	need to draw the c	liagram		2p			
				2s			
				1s			

C9	9. What sublev	els are preser	t in the third energy	level?		
a) s only	b) s and j	o only	c) s, p, and d only	d) s, p, d,	and f only	
A1	10. How many	y orbitals a	re present in any p s	ublevel?		
a. 3	b	. 5	c.6	d. 7	e. 10	
B1 are occup	1. When there ied?	e is an option,	will electrons pair u	p in orbitals, or wil	l they go in one at a time until	all
a. pair up	first b	. fill all orbita	als with one electron	before pairing		
C1	2. How many	electrons are	e in the valence (oute	er) shell of oxygen?		
a. 2	b. 4	c. 6	d. 8			
D1	13. What is th	e coefficient o	of the highest energy	level in As?		
a. 1	b. 2	c. 3	d. 4	e. 5		
B1 ionic com	4. Which sub pound?	atomic partic	les are transferred fr	om one atom to and	other during the formation of a	n
a. proton	is b	electrons.	c. neutrons			
#15-18. N	latching					
a1. d	- block	a. cont	ains vanadium			
d2. f	-block	b. cont	ains lead			
	- block	c. cont	ains Magnesium			
b4. p	-block	d. cont	ains Uranium			
10.00	4 6 11	• • • • •	1 ' 1 C'	· (DI 1	• 4 11 10 4 1 4	

19-20. Arrange the following sublevels in order of increasing energy (Place 1 in the blank for the lowest energy and 8 for the highest energy).

<u>2</u> 3d	2s	<u> 4 </u> 5p	<u>5</u> 4f	<u>6</u> 6p	<u>3</u> 5s	<u>7</u> 5f	_8	<u>6</u> d
-------------	----	--------------------	-------------	-------------	-------------	-------------	----	------------

Atoms and Ions

1-16: ATOMS (data in bold regular font. Answers in italics)

Symbol	Atomic #	Mass #	# p ⁺	#e ⁻	$\#n^0$	Hyphen Notation
Si	14	27	14	14	13	Silicon - 27
Bi	83	208	83	83	125	Bismuth - 208
Rb	37	88	37	37	51	Rubidium-88

17 – 35: IONS

Symbol	Atomic #	Mass #	# p ⁺	#e⁻	#n ⁰	Charge
Zn +2	30	65	30	28	35	+2
P ⁻³	15	31	15	18	16	-3
<i>K</i> ⁺¹	19	41	19	18	22	+1
S	16	35	16	18	19	-2

Configuration Section

1. Write the complete electron configuration for Chlorine.

$$1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^5$$

- 2. How many electrons are in the outer shell of Chlorine? 7
- 3. Fill the orbital diagram for Br. You can use circles or draw boxes.
- 4. How many electrons are in the outer shell of Bromine?

7

5. Which element's configuration is shown below?

[Kr] $5s^2$, $4d^{10}$, $5p^3$

5. Write the noble gas configuration of Calcium.

$[Ar\} 4s^2$

6. Draw dot diagrams (valence shell only) for the following elements.

: N. : Al

7. How many electrons are in all of the **p sublevels** of Ge? 14