We have studied two mole equalities. They are: $1 \text{ mol} = 6.02 \times 10^{23} \text{ particles}$

1 mol =
$$6.02 \times 10^{23}$$
 particles

1 mol = g-formula-mass (periodic table)

Each equality can be written as a set of two conversion factors. They are:

$$\left(\frac{1 \text{ mole}}{6.02 \times 10^{23} \text{ particles}}\right) \qquad \left(\frac{6.02 \times 10^{23} \text{ particles}}{1 \text{ mole}}\right)$$

$$\left(\frac{6.02x10^{23} \ particles}{1 \ mole}\right)$$

$$\left(\frac{1 \text{ mole}}{g - f \text{ ormula- mass}}\right) \qquad \left(\frac{g - f \text{ ormula- mass}}{1 \text{ mole}}\right)$$

$$\left(\frac{g-f\ ormula-mass}{1\ mole}\right)$$

Mole-Particle Conversions

1. How many moles of magnesium are in 3.01×10^{22} atoms of magnesium? Answer ---- .05 moles

2. How many molecules are there in 4.00 moles of glucose, $C_6H_{12}O_6$? Answer: 2.4 x 10^{24} molecules

3. How many moles are 1.20×10^{25} atoms of phosphorous? Answer: 19.9 moles

4. How many atoms are in 0.750 moles of zinc? Answer: 4.5×10^{23} atoms

5. How many molecules are in 0.400 moles of N_2O_5 ? Answer: 2.4 x 10^{23} molecules