Equilibrium Problems

15.17 For the system
$\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{C}}=0.050$ at $250^{\circ} \mathrm{C}$.
If $0.30 \mathrm{~mol} \mathrm{PCl}_{5}$ is placed in a $1.0-\mathrm{L}$ container at this temperature, what are the equilibrium concentrations of all species?

Answers

$$
\mathrm{PCl}_{3}=.1 \mathrm{M}
$$

$\mathrm{Cl}_{2}=.1 \mathrm{M}$

$$
\mathrm{PCl}_{5}=.2 \mathrm{M}
$$

15.21 Consider the system
$2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \quad<->\quad 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+2 \mathrm{SO}_{2}(\mathrm{~g})$
$\Delta \mathrm{H}$ for the forward reaction is -1036 kJ . Predict whether the forward or reverse reaction will occur when the equilibrium is disturbed by
a. expanding the container at constant temperature b. removing SO_{2}
c. raising the temperature
d. absorbing the water vapor

Answers
$\mathrm{a}=\mathrm{left}$
$\mathrm{b}=$ right
$\mathrm{c}=\mathrm{left}$
d. $=$ right
15.40 A gaseous reaction mixture contains $0.30 \mathrm{~mol} \mathrm{SO}_{2}, 0.16 \mathrm{~mol} \mathrm{Cl}_{2}$, and $0.50 \mathrm{~mol} \mathrm{SO}_{2} \mathrm{Cl}_{2}$ in a 2.0-L container; $\mathrm{K}_{\mathrm{C}}=0.011$ for $\mathrm{SO}_{2} \mathrm{Cl}_{2}(\mathrm{~g})<->\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
a. Is the system at equilibrium? Explain.
b. If it is not at equilibrium, in which direction will the system move to reach equilibrium?

Answers a. The system is not at equilibrium because Q is not equal to Kc .
b. The reaction will proceed to the left on the way to equilibrium because Q is greater than Kc and the product concentration needs to get smaller while the reactant concentration needs to get larger. Q was .048 - greater than .011
15.41 The commercial preparation of methanol, $\mathrm{CH}_{3} \mathrm{OH}$, is done at elevated temperatures with the reaction $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g})<->\mathrm{CH}_{3} \mathrm{OH}(\mathrm{g}) \quad$ At a certain temperature, the K_{c} value is 7.3. In which direction will the system move to achieve equilibrium when the starting mixture contains
a. $\quad 0.80 \mathrm{M} \mathrm{CO}$ and $1.5 \mathrm{M} \mathrm{H}_{2}$?
b. a gaseous mixture of $0.90 \mathrm{~mol} \mathrm{CH}_{3} \mathrm{OH}, 0.45 \mathrm{~mol} \mathrm{CO}$, and $0.45 \mathrm{~mol} \mathrm{H}_{2}$ in a 3.0-L container?

Answers \quad a. $\mathrm{Q}=0$, so the reaction will proceed to the right in order to make more products and increase the ratio.
b. $\mathrm{Q}=88.8$ which is greater than 7.3 , so the reaction will proceed to the left in order to decrease the ratio of products to reactants.
$15.43 \mathrm{~K}_{\mathrm{c}}$ is 2.6×10^{8} at 825 K for the reaction $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}_{2}(\mathrm{~g})<->2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
What is the equilibrium concentration of $\mathrm{H}_{2} \mathrm{~S}$ if those of H_{2} and S_{2} are 0.0020 M and 0.0010 M , respectively?
Answer $\quad 1.02 \mathrm{M}$
15.44 For the system
$2 \mathrm{HI}(\mathrm{g})<->\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{C}}=0.016$ at 800 K . If, at $800 \mathrm{~K}[\mathrm{HI}]=0.20 \mathrm{M}$ and $\left[\mathrm{H}_{2}\right]=\left[\mathrm{I}_{2}\right]$, calculate the equilibrium concentration of H_{2}.
Answer .025 M
15.45 For the equilibrium in Problem $15.44,1.00 \mathrm{~mol} \mathrm{HI}$ is placed in a $4.00-\mathrm{L}$ flask at 800 K . What are the equilibrium concentrations of $\mathrm{H}_{2}, \mathrm{I}_{2}$, and HI ?

Answer

$$
\mathrm{HI}=.2 \mathrm{M}
$$

$$
\mathrm{H}_{2}=.025 \mathrm{M}
$$

$$
\mathrm{I}_{2}=.025 \mathrm{M}
$$

15.46 For the reaction

$$
2 \operatorname{IBr}(\mathrm{~g})<->\quad \mathrm{I}_{2}(\mathrm{~g})+\operatorname{Br}_{2}(\mathrm{~g})
$$

K_{C} is 2.5×10^{-3} at $25^{\circ} \mathrm{C}$. Calculate the equilibrium concentration of each species in a 4.0-L vessel starting with
a. $\quad 0.60 \mathrm{~mol} \mathrm{IBr}$
b. $\quad 0.30 \mathrm{~mol} \mathrm{I}_{2}, 0.30 \mathrm{~mol} \mathrm{Br}_{2}$
c. $\quad 0.30 \mathrm{~mol} \mathrm{I}_{2}, 0.30 \mathrm{~mol} \mathrm{Br} 2,0.30 \mathrm{~mol} \mathrm{IBr}$

Answers a. $.0068 \mathrm{M}, .0068 \mathrm{M}$, and .136 M
b. $\mathrm{IBr}=.136 \mathrm{M}$, iodine $=.007 \mathrm{M}$ and bromine $=.007 \mathrm{M}$
c. $. \mathrm{IBr}=.205 \mathrm{M}$, iodine $=.01 \mathrm{M}$ and bromine $=.01 \mathrm{M}$
15.47 For the system

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad<->\mathrm{COCl}_{2}(\mathrm{~g}) \quad \mathrm{K}_{\mathrm{c}}=3.0 . \text { If } 1.5 \mathrm{~mol} \mathrm{CO} \text { and } 1.0 \mathrm{~mol} \mathrm{Cl}_{2} \text { are put in a } 5.0-\mathrm{L}
$$ container, what are the equilibrium concentrations of all species?

$\begin{array}{ccc}\text { Answers } & \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) & <->\mathrm{COCl}_{2}(\mathrm{~g}) \\ & .22 \mathrm{M} \quad .12 \mathrm{M} & .08 \mathrm{M}\end{array}$
15.48 For the system
$\mathrm{PBr}_{3}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})<->\mathrm{PBr}_{5}(\mathrm{~g}) ; \mathrm{K}_{\mathrm{C}}=0.250$
A starting mixture of $1.00 \mathrm{~mol} \mathrm{PBr}_{3}$ and $3.00 \mathrm{~mol}_{\mathrm{Br}_{2}}$ is used in a $1.00-\mathrm{L}$ container. What are the concentrations of all species at equilibrium?

Answers $\quad \operatorname{PBr}_{3}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g})<->\operatorname{PBr}_{5}(\mathrm{~g})$

$$
.6 \mathrm{M} \quad 2.6 \mathrm{M} \quad .4 \mathrm{M}
$$

15.51 For the system

$$
\mathrm{N}_{2} \mathrm{O}_{3}(\mathrm{~g})<->\mathrm{NO}(\mathrm{~g})+\mathrm{NO}_{2}(\mathrm{~g})
$$

$\Delta \mathrm{H}$ is +39.7 kJ . Predict what effect each of the following changes will have on the position of the equilibrium:
a. decreasing the container size at constant temperature
b. adding NO
c. lowering the temperature
d. adding helium gas

Answers $\quad \mathrm{a}=$ left $\mathrm{b}=$ left $\mathrm{c}=$ left $\quad \mathrm{d}=$ no effect
15.52 Predict the direction in which each of the following equilibria will shift if the pressure on the system is reduced by expansion:
a. $\quad \mathrm{SbCl}_{5}(\mathrm{~g})<->\mathrm{SbCl}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
b. $\quad \mathrm{Ni}(\mathrm{s})+4 \mathrm{CO}(\mathrm{g})<->\mathrm{Ni}(\mathrm{CO})_{4}(\mathrm{~g})$
c. $\quad \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})<->\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$

Answers $\quad \mathrm{a}=$ right $\mathrm{b}=$ left $\quad \mathrm{c}=$ no change
15.53 For the system

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})<->\mathrm{CH}_{3} \mathrm{Cl}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g})
$$

$\Delta \mathrm{H}=-99 \mathrm{~kJ}$ for the forward reaction; K_{C} is 1×10^{18} at $25^{\circ} \mathrm{C}$. Would you expect K_{C} to increase or decrease when the temperature rises? Explain.

Answer -- Kc should decrease.

