Equilibrium Problems

15.17 For the system

PCl₅(g) \frown PCl₃(g) + Cl₂(g) K_c = 0.050 at 250° C. If 0.30 mol PCl₅ is placed in a 1.0-L container at this temperature, what are the equilibrium concentrations of all species?

Answers $PCl_3 = .1 M$ $Cl_2 = .1 M$ $PCl_5 = .2 M$

15.21 Consider the system

 $2 H_2S(g) + 3 O_2(g) \quad <-> \quad 2 H_2O(g) + 2 SO_2(g)$

 Δ H for the forward reaction is –1036 kJ. Predict whether the forward or reverse reaction will occur when the equilibrium is disturbed by

a.	expanding the container at constant temperature			b.	removing SO ₂
с.	raising the temperature			d.	absorbing the water vapor
Answers	a = left	b = right	c = left	d. = right	

15.40 A gaseous reaction mixture contains 0.30 mol SO₂, 0.16 mol Cl₂, and 0.50 mol SO₂Cl₂ in a 2.0-L container; $K_c = 0.011$ for SO₂Cl₂(g) <-> SO₂(g) + Cl₂(g)

- a. Is the system at equilibrium? Explain.
- b. If it is not at equilibrium, in which direction will the system move to reach equilibrium?

Answers a. The system is not at equilibrium because Q is not equal to Kc. b. The reaction will proceed to the left on the way to equilibrium because Q is greater than Kc and the product concentration needs to get smaller while the reactant concentration needs to get larger. Q was .048 – greater than .011

15.41 The commercial preparation of methanol, CH_3OH , is done at elevated temperatures with the reaction $CO(g) + 2 H_2(g) <-> CH_3OH(g)$ At a certain temperature, the K_c value is 7.3. In which direction will the system move to achieve equilibrium when the starting mixture contains

a. 0.80 M CO and 1.5 M H₂?

- b. a gaseous mixture of 0.90 mol CH₃OH, 0.45 mol CO, and 0.45 mol H₂ in a 3.0-L container?
- Answers
 a. Q = 0, so the reaction will proceed to the right in order to make more products and increase the ratio.
 b. Q = 88.8 which is greater than 7.3, so the reaction will proceed to the left in order to decrease the ratio of products to reactants.

15.43 K_c is 2.6 x 10⁸ at 825 K for the reaction $2 H_2(g) + S_2(g) < -> 2 H_2S(g)$ What is the equilibrium concentration of H₂S if those of H₂ and S₂ are 0.0020M and 0.0010M, respectively?

Answer 1.02 M

15.44 For the system $2 \text{ HI}(g) \iff H_2(g) + I_2(g)$ K_c = 0.016 at 800 K. If, at 800 K [HI] = 0.20 M and [H₂] = [I₂], calculate the equilibrium concentration of H₂.

Answer .025 M

15.45 For the equilibrium in Problem 15.44, 1.00 mol HI is placed in a 4.00-L flask at 800 K. What are the equilibrium concentrations of H_2 , I_2 , and HI?

Answer HI = .2 M $H_2 = .025 M$ $I_2 = .025 M$

15.46 For the reaction

 $2 \text{ IBr}(g) \iff I_2(g) + Br_2(g)$ K_c is 2.5 x 10⁻³ at 25° C. Calculate the equilibrium concentration of each species in a 4.0-L vessel starting with

a. 0.60 mol IBr b. $0.30 \text{ mol } I_2, 0.30 \text{ mol } Br_2$ c. $0.30 \text{ mol } I_2, 0.30 \text{ mol } Br_2, 0.30 \text{ mol IBr}$

Answers

a. .0068 M, .0068 M, and .136 M b. IBr = .136 M, iodine = .007 M and bromine = .007 M c. .IBr = .205 M, iodine = .01 M and bromine = .01 M

15.47 For the system

 $CO(g) + Cl_2(g) \quad \iff COCl_2(g) \quad K_c = 3.0.$ If 1.5 mol CO and 1.0 mol Cl₂ are put in a 5.0-L container, what are the equilibrium concentrations of all species?

Answers $CO(g) + Cl_2(g) \iff COCl_2(g)$.22 M .12 M .08 M

15.48 For the system

 $PBr_3(g) + Br_2(g) \iff PBr_5(g); K_c = 0.250$

A starting mixture of 1.00 mol PBr_3 and 3.00 mol Br_2 is used in a 1.00-L container. What are the concentrations of all species at equilibrium?

Answers $PBr_3(g) + Br_2(g) \iff PBr_5(g)$.6 M 2.6 M .4 M

15.51 For the system

 $N_2O_3(g) \iff NO(g) + NO_2(g)$

 Δ H is +39.7 kJ. Predict what effect each of the following changes will have on the position of the equilibrium:

a. decreasing the container size at constant temperature

- b. adding NO
- c. lowering the temperature
- d. adding helium gas

Answers a = left b = left c = left d = no effect

15.52 Predict the direction in which each of the following equilibria will shift if the pressure on the system is reduced by expansion:

a. $SbCl_5(g) \iff SbCl_2(g) + Cl_2(g)$

b. $Ni(s) + 4 CO(g) \iff Ni(CO)_4(g)$

c. $\operatorname{CO}(g) + \operatorname{H}_2\operatorname{O}(g) \iff \operatorname{CO}_2(g) + \operatorname{H}_2(g)$

Answers a = right b = left c = no change

15.53 For the system

 $CH_4(g) + Cl_2(g) \iff CH_3Cl(g) + HCl(g)$

 $\Delta H = -99 \text{ kJ}$ for the forward reaction; K_c is 1 x 10¹⁸ at 25° C. Would you expect K_c to increase or decrease when the temperature rises? Explain.

Answer -- Kc should decrease.